*** Welcome to piglix ***

Second law of thermodynamics


The second law of thermodynamics states that the total entropy of an isolated system always increases over time, or remains constant in ideal cases where the system is in a steady state or undergoing a reversible process. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past.

Historically, the second law was an empirical finding that was accepted as an axiom of thermodynamic theory. Statistical thermodynamics, classical or quantum, explains the microscopic origin of the law.

The second law has been expressed in many ways. Its first formulation is credited to the French scientist Sadi Carnot in 1824, who showed that there is an upper limit to the efficiency of conversion of heat to work in a heat engine.

The first law of thermodynamics provides the basic definition of internal energy, associated with all thermodynamic systems, and states the rule of conservation of energy. The second law is concerned with the direction of natural processes. It asserts that a natural process runs only in one sense, and is not reversible. For example, heat always flows spontaneously from hotter to colder bodies, and never the reverse, unless external work is performed on the system. Its modern definition is in terms of entropy.

In a fictive reversible process, an infinitesimal increment in the entropy (dS) of a system is defined to result from an infinitesimal transfer of heat (δQ) to a closed system divided by the common temperature (T) of the system and the surroundings which supply the heat:


...
Wikipedia

...