The Arrow of Time, or Time's Arrow, is a concept developed in 1927 by the British astronomer Arthur Eddington involving the "one-way direction" or "asymmetry" of time. This direction, according to Eddington, can be determined by studying the organization of atoms, molecules, and bodies, and might be drawn upon a four-dimensional relativistic map of the world ("a solid block of paper").
Physical processes at the microscopic level are believed to be either entirely or mostly time-symmetric: if the direction of time were to reverse, the theoretical statements that describe them would remain true. Yet at the macroscopic level it often appears that this is not the case: there is an obvious direction (or flow) of time.
In the 1928 book The Nature of the Physical World, which helped to popularize the concept, Eddington stated:
Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the random element in the state of the world, then the arrow is pointing towards the future; if the random element decreases the arrow points towards the past. That is the only distinction known to physics. This follows at once if our fundamental contention is admitted that the introduction of randomness is the only thing which cannot be undone. I shall use the phrase ‘time's arrow’ to express this one-way property of time which has no analogue in space.
Eddington then gives three points to note about this arrow:
According to Eddington the arrow indicates the direction of progressive increase of the random element. Following a lengthy argument upon the nature of thermodynamics he concludes that, so far as physics is concerned, time's arrow is a property of entropy alone.
The symmetry of time (T-symmetry) can be understood by a simple analogy: if time were perfectly symmetrical, a video of real events would seem realistic whether played forwards or backwards. An obvious objection to this notion is gravity: things fall down, not up. Yet a ball that is tossed up, slows to a stop and falls into the hand is a case where recordings would look equally realistic forwards and backwards. The system is T-symmetrical but while going "forward" kinetic energy is dissipated and entropy is increased. Entropy may be one of the few processes that is not time-reversible. According to the statistical notion of increasing entropy the "arrow" of time is identified with a decrease of free energy.