*** Welcome to piglix ***

Hausdorff topological space

Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)
History

In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a topological space in which distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom.

Points x and y in a topological space X can be separated by neighbourhoods if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (UV = ∅). X is a Hausdorff space if all distinct points in X are pairwise neighborhood-separable. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff spaces are also called T2 spaces. The name separated space is also used.

A related, but weaker, notion is that of a preregular space. X is a preregular space if any two topologically distinguishable points can be separated by neighbourhoods. Preregular spaces are also called R1 spaces.


...
Wikipedia

...