*** Welcome to piglix ***

History of the separation axioms

Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)
History

The history of the separation axioms in general topology has been convoluted, with many meanings competing for the same terms and many terms competing for the same concept.

Before the current general definition of topological space, there were many definitions offered, some of which assumed (what we now think of as) some separation axioms. For example, the definition given by Felix Hausdorff in 1914 is equivalent to the modern definition plus the Hausdorff separation axiom.

The separation axioms, as a group, became important in the study of metrisability: the question of which topological spaces can be given the structure of a metric space. Metric spaces satisfy all of the separation axioms; but in fact, studying spaces that satisfy only some axioms helps build up to the notion of full metrisability.

The separation axioms that were first studied together in this way were the axioms for accessible spaces, Hausdorff spaces, regular spaces, and normal spaces. Topologists assigned these classes of spaces the names T1, T2, T3, and T4. Later this system of numbering was extended to include T0, T, T (or Tπ), T5, and T6.

But this sequence had its problems. The idea was supposed to be that every Ti space is a special kind of Tj space if i > j. But this is not necessarily true, as definitions vary. For example, a regular space (called T3) does not have to be a Hausdorff space (called T2), at least not according to the simplest definition of regular spaces.


...
Wikipedia

...