In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.
The fundamental concepts in point-set topology are continuity, compactness, and connectedness:
The words 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a topology. A set with a topology is called a topological space.
Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.
General topology grew out of a number of areas, most importantly the following:
General topology assumed its present form around 1940. It captures, one might say, almost everything in the intuition of continuity, in a technically adequate form that can be applied in any area of mathematics.
Let X be a set and let τ be a family of subsets of X. Then τ is called a topology on X if:
If τ is a topology on X, then the pair (X, τ) is called a topological space. The notation Xτ may be used to denote a set X endowed with the particular topology τ.
The members of τ are called open sets in X. A subset of X is said to be closed if its complement is in τ (i.e., its complement is open). A subset of X may be open, closed, both (clopen set), or neither. The empty set and X itself are always both closed and open.