*** Welcome to piglix ***

Topologically distinguishable


In topology, two points of a topological space X are topologically indistinguishable if they have exactly the same neighborhoods. That is, if x and y are points in X, and Nx is the set of all neighborhoods that contain x, and Ny is the set of all neighborhoods that contain y, then x and y are "topologically indistinguishable" if and only if Nx = Ny. (See Hausdorff's axiomatic neighborhood systems.)

Intuitively, two points are topologically indistinguishable if the topology of X is unable to discern between the points.

Two points of X are topologically distinguishable if they are not topologically indistinguishable. This means there is an open set containing precisely one of the two points (equivalently, there is a closed set containing precisely one of the two points). This open set can then be used to distinguish between the two points. A T0 space is a topological space in which every pair of distinct points is topologically distinguishable. This is the weakest of the separation axioms.

Topological indistinguishability defines an equivalence relation on any topological space X. If x and y are points of X we write xy for "x and y are topologically indistinguishable". The equivalence class of x will be denoted by [x].

For T0 spaces (in particular, for Hausdorff spaces) the notion of topological indistinguishability is trivial, so one must look to non-T0 spaces to find interesting examples. On the other hand, regularity and normality do not imply T0, so we can find examples with these properties. In fact, almost all of the examples given below are completely regular.


...
Wikipedia

...