In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra (1951), is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center Z(U(g)) of the universal enveloping algebra U(g) of a reductive Lie algebra g to the elements S(h)W of the symmetric algebra S(h) of a Cartan subalgebra h that are invariant under the Weyl group W.
Let n be the rank of g, which is the dimension of the Cartan subalgebra h. H. S. M. Coxeter observed that S(h)W is a polynomial algebra in n variables (see Chevalley–Shephard–Todd theorem for a more general statement). Therefore, the center of the universal enveloping algebra of a reductive Lie algebra is a polynomial algebra. The degrees of the generators are the degrees of the fundamental invariants given in the following table.
For example, the center of the universal enveloping algebra of G2 is a polynomial algebra on generators of degrees 2 and 6.
Let g be a semisimple Lie algebra, h its Cartan subalgebra and λ, μ ∈ h* be two elements of the weight space and assume that a set of positive roots Φ+ have been fixed. Let Vλ, resp. Vμ be highest weight modules with highest weight λ, resp. μ.