*** Welcome to piglix ***

Group of Lie type


In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase "group of Lie type" does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.

The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. Dieudonné (1971) and Carter (1989) are standard references for groups of Lie type.

An initial approach to this question was the definition and detailed study of the so-called classical groups over finite and other fields by Jordan (1870). These groups were studied by L. E. Dickson and Jean Dieudonné. Emil Artin investigated the orders of such groups, with a view to classifying cases of coincidence.

A classical group is, roughly speaking, a special linear, orthogonal, symplectic, or unitary group. There are several minor variations of these, given by taking derived subgroups or central quotients, the latter yielding projective linear groups. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series An, Bn, Cn, Dn,2An, 2Dn of Chevalley and Steinberg groups.


...
Wikipedia

...