In mathematics, a compact (topological) group is a topological group whose topology is compact. Compact groups are a natural generalisation of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
In the following we will assume all groups are Hausdorff spaces.
Lie groups form a very nice class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include
The classification theorem of compact Lie groups states that up to finite extensions and finite covers this exhausts the list of examples (which already includes some redundancies).
Given any compact Lie group G one can take its identity component G0, which is connected. The quotient group G/G0 is the group of components π0(G) which must be finite since G is compact. We therefore have a finite extension
Now every compact, connected Lie group G0 has a finite covering
where is a finite abelian group and is a product of a torus and a compact, connected, simply-connected Lie group K: