*** Welcome to piglix ***

Grassmann number


In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra over the complex numbers. The special case of a 1-dimensional algebra is known as a dual number. Grassmann numbers saw an early use in physics to express a path integral representation for fermionic fields, although they are now widely used as a foundation for superspace, on which supersymmetry is constructed.

Grassmann numbers are generated by anti-commuting elements or objects. The idea of anti-commuting objects arises in multiple areas of mathematics: they are typically seen in differential geometry, where the differential forms are anti-commuting. Differential forms are normally defined in terms of derivatives on a manifold; however, one can contemplate the situation where one "forgets" or "ignores" the existence of any underlying manifold, and "forgets" or "ignores" that the forms were defined as derivatives, and instead, simply contemplate a situation where one has objects that anti-commute, and have no other pre-defined or pre-supposed properties. Such objects form an algebra, and specifically the Grassmann algebra or exterior algebra.

The Grassmann numbers are elements of that algebra. The appellation of "number" is justified by the fact that they behave not unlike "ordinary" numbers: they can be added, multiplied and divided: they behave almost like a field. More can be done: one can consider polynomials of Grassmann numbers, leading to the idea of holomorphic functions. One can take derivatives of such functions, and then consider the anti-derivatives as well. Each of these ideas can be carefully defined, and correspond reasonably well to the equivalent concepts from ordinary mathematics. The analogy does not stop there: one has an entire branch of supermathematics, where the analog of Euclidean space is superspace, the analog of a manifold is a supermanifold, the analog of a Lie algebra is a Lie superalgebra and so on. The Grassmann numbers are the underlying construct that make this all possible.


...
Wikipedia

...