Glycosylation (see also chemical glycosylation) is the reaction in which a carbohydrate, i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor). In biology glycosylation mainly refers in particular to the enzymatic process that attaches glycans to proteins, lipids, or other organic molecules. This enzymatic process produces one of the fundamental biopolymers found in cells (along with DNA, RNA, and proteins). Glycosylation is a form of co-translational and post-translational modification. Glycans serve a variety of structural and functional roles in membrane and secreted proteins. The majority of proteins synthesized in the rough ER undergo glycosylation. It is an enzyme-directed site-specific process, as opposed to the non-enzymatic chemical reaction of glycation. Glycosylation is also present in the cytoplasm and nucleus as the O-GlcNAc modification. Aglycosylation is a feature of engineered antibodies to bypass glycosylation. Five classes of glycans are produced:
Glycosylation is the process by which a carbohydrate is covalently attached to a target macromolecule, typically proteins and lipids. This modification serves various functions. For instance, some proteins do not fold correctly unless they are glycosylated. In other cases, proteins are not stable unless they contain oligosaccharides linked at the amide nitrogen of certain asparagine. The influence of glycosylation on the folding and stability of glycoprotein is twofold. Firstly, the highly soluble glycans may have a direct physicochemical stabilisation effect. Secondly, N-linked glycan mediate a critical quality control check point in glycoprotein folding in the endoplasmic reticulum. Glycosylation also plays a role in cell-cell adhesion (a mechanism employed by cells of the immune system) via sugar-binding proteins called lectins, which recognize specific carbohydrate moieties. Glycosylation is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. Glycosylation also underpins the ABO blood group system. It is the presence or absence of glycosyltransferases which dictates which blood group antigens are presented and hence what antibody specificities are exhibited. This immunological role may well have driven the diversification of glycan heterogeneity and creates a barrier to zoonotic transmission of viruses. In addition, glycosylation is often used by viruses to shield the underlying viral protein from immune recognition. A significant example is the dense glycan shield of the envelope spike of the human immunodeficiency virus.