Glycolipids are lipids with a carbohydrate attached by a glycosidic bond. Their role is to maintain stability of the membrane and to facilitate cellular recognition. The carbohydrates are found on the outer surface of all eukaryotic cell membranes. They extend from the phospholipid bilayer into the aqueous environment outside the cell where it acts as a recognition site for specific chemicals as well as helping to maintain the stability of the membrane and attaching cells to one another to form tissues.
The basic structure of a glycolipid is the presence of a carbohydrate monosaccharide or oligosaccharide bound to a lipid moiety. The lipid complex is most often composed of either a glycerol or sphingosine backbone, which gives rise to the two main categories of glycolipids, glyceroglycolipids and sphingolipids. Lipids are non-polar molecules, providing them the capability of interacting with the lipid-bilayer of the cell membrane and anchoring the glycolipid to the surface of the cell. Carbohydrates are used as the ligand component of glycolipids and their structure varies depending on the structure of the molecule it binds to. The carbohydrate contains polar groups that enable the molecule to be soluble in the aqueous environment surrounding the cell. The two molecular groups form a glycoconjugate through a covalent bond referred to as a glycosidic bond. The anomeric carbon of the sugar binds to the hydroxyl group present on the lipid.
Glycolipids formation is dependent on the activity of glycosyltransferases. Glycoslytransferases are the enzymes responsible for catalyzing the reaction of the covalent bond formation linking the carbohydrate complex to the lipid molecule. It also functions to form the correct oligosaccharide that will be present in the complete structure to act as the receptor for cell signaling. The glycolipid is assembled in the golgi-apparatus and transported to the membrane via vesicles where the lipid remains embedded in the membrane and the carbohydrate is on the outer surface of the cell.