*** Welcome to piglix ***

Giant planet


A giant planet is any massive planet. They are usually primarily composed of low-boiling-point materials (gases or ices), rather than rock or other solid matter, but massive solid planets can also exist. There are four known giant planets in the Solar System: Jupiter, Saturn, Uranus and Neptune. Many extrasolar giant planets have been identified orbiting other stars.

Giant planets are also sometimes called jovian planets, after Jupiter. They are also sometimes known as gas giants. However, many astronomers apply the latter term only to Jupiter and Saturn, classifying Uranus and Neptune, which have different compositions, as ice giants. Both names are potentially misleading: all of the giant planets consist primarily of fluids above their critical points, where distinct gas and liquid phases do not exist. The principal components are hydrogen and helium in the case of Jupiter and Saturn, and water, ammonia and methane in the case of Uranus and Neptune.

The defining differences between a very low-mass brown dwarf and a gas giant (~13 MJ) are debated. One school of thought is based on formation; the other, on the physics of the interior. Part of the debate concerns whether "brown dwarfs" must, by definition, have experienced nuclear fusion at some point in their history.

The term gas giant was coined in 1952 by the science fiction writer James Blish and was originally used to refer to all giant planets. Arguably it is something of a misnomer, because throughout most of the volume of these planets the pressure is so high that matter is not in gaseous form. Other than solids in the core and the upper layers of the atmosphere, all matter is above the critical point, where there is no distinction between liquids and gases. Fluid planet would be a more accurate term. Jupiter also has metallic hydrogen near its center, but much of its volume is hydrogen, helium, and traces of other gases above their critical points. The observable atmospheres of all these planets (at less than unit optical depth) are quite thin compared to their radii, only extending perhaps one percent of the way to the center. Thus the observable portions are gaseous (in contrast to Mars and Earth, which have gaseous atmospheres through which the crust can be seen).


...
Wikipedia

...