Brown dwarfs are substellar objects that occupy the mass range between the heaviest gas giant planets and the lightest stars, of approximately 13 to 75–80 Jupiter masses (MJ), or approximately ×1028 kg to about 2.5×1029 kg. Below this range are the 1.5sub-brown dwarfs, and above it are the lightest red dwarfs (M9 V). Brown dwarfs may be fully convective, with no layers or chemical differentiation by depth.
Unlike the stars in the main-sequence, brown dwarfs are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) to helium in their cores. They are, however, thought to fuse deuterium (2H) and to fuse lithium (7Li) if their mass is above a debated threshold of 13 MJ and 65 MJ, respectively. It is also debated whether brown dwarfs would be better defined by their formation processes rather than by their supposed nuclear fusion reactions.
Stars are categorized by spectral class, with brown dwarfs designated as types M, L, T, and Y. Despite their name, brown dwarfs are of different colors. Many brown dwarfs would likely appear magenta to the human eye, or possibly orange/red. Brown dwarfs are not very luminous at visible wavelengths.