*** Welcome to piglix ***

Galileo positioning system

Galileo
Galileo logo.svg

Country of origin European Union
Operator(s) GSA, ESA
Type Civilian, commercial
Status Operational
Coverage Global
Precision 1 metre (public)
1 cm (encrypted)
Constellation size
Total satellites 30
Satellites in orbit 11 operational + 4 under commissioning and 3 for testing or not available (January 2017)
First launch 2011
Orbital characteristics
Regime(s) 3x MEO planes
Orbital height 23,222 km (14,429 mi)

Galileo is the global navigation satellite system (GNSS) that is currently being created by the European Union (EU) through the European Space Agency (ESA) and the European GNSS Agency (GSA), headquartered in Prague in the Czech Republic, with two ground operations centres, Oberpfaffenhofen near Munich in Germany and Fucino in Italy. The €5 billion project is named after the Italian astronomer Galileo Galilei. One of the aims of Galileo is to provide an independent high-precision positioning system so European nations do not have to rely on the Russian GLONASS, Chinese Bei Dou or US GPS systems, which could be disabled or degraded by their operators at any time. The use of basic (lower-precision) Galileo services will be free and open to everyone. The higher-precision capabilities will be available for paying commercial users. Galileo is intended to provide horizontal and vertical position measurements within 1-metre precision, and better positioning services at high latitudes than other positioning systems.

Galileo is to provide a new global search and rescue (SAR) function as part of the MEOSAR system. Satellites will be equipped with a transponder which will relay distress signals from emergency beacons to the Rescue coordination centre, which will then initiate a rescue operation. At the same time, the system is projected to provide a signal, the Return Link Message (RLM), to the emergency beacon, informing them that their situation has been detected and help is on the way. This latter feature is new and is considered a major upgrade compared to the existing Cospas-Sarsat system, which do not provide feedback to the user. Tests in February 2014 found that for Galileo's search and rescue function, operating as part of the existing International Cospas-Sarsat Programme, 77% of simulated distress locations can be pinpointed within 2 km, and 95% within 5 km.


...
Wikipedia

...