*** Welcome to piglix ***

Fischer–Speier esterification

Fischer–Speier esterification
Named after Hermann Emil Fischer
Arthur Speier
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal fischer-esterification
RSC ontology ID RXNO:0000167

Fischer esterification or Fischer–Speier esterification is a special type of esterification by refluxing a carboxylic acid and an alcohol in the presence of an acid catalyst. The reaction was first described by Emil Fischer and Arthur Speier in 1895. Most carboxylic acids are suitable for the reaction, but the alcohol should generally be a primary or secondary alkyl. Tertiary alcohols are prone to elimination. Contrary to common misconception found in organic chemistry textbooks, phenols can also be esterified to give good to near quantitative yield of products. Commonly used catalysts for a Fischer esterification include sulfuric acid, tosylic acid, and Lewis acids such as scandium(III) triflate. For more valuable or sensitive substrates (for example, biomaterials), dicyclohexylcarbodiimide is often used. The reaction is often carried out without a solvent (particularly when a large reagent excess of alcohol is used) or in a non-polar solvent (e.g. toluene) to facilitate the Dean-Stark method. Typical reaction times vary from 1–10 hours at temperatures of 60-110 °C.

Direct acylations of alcohols with carboxylic acids is preferred over acylations with anhydrides (poor atom economy) or acid chlorides (moisture sensitive). The main disadvantage of direct acylation is the unfavorable chemical equilibrium that must be remedied (e.g. by a large excess of one of the reagents), or by the removal of water (e.g. by using Dean-Stark distillation, anhydrous salts,molecular sieves, or by using a stoichiometric quantity of acid catalyst).


...
Wikipedia

...