*** Welcome to piglix ***

Ferritic nitrocarburizing


Ferritic nitrocarburizing, also known by the proprietary names Tennifer/ Tenifer and Melonite, is a range of proprietary case hardening processes that diffuse nitrogen and carbon into ferrous metals at sub-critical temperatures during a salt bath. The processing temperature ranges from 525 °C (977 °F) to 625 °C (1,157 °F), but usually occurs at 565 °C (1,049 °F). At this temperature steels and other ferrous alloys are still in a ferritic phase, which is advantageous compared to other case hardening processes that occur in the austenitic phase. There are four main classes of ferritic nitrocarburizing: gaseous, salt bath, ion or plasma, and fluidized-bed.

The process is used to improve three main surface integrity aspects including scuffing resistance, fatigue properties, and corrosion resistance. It has the added advantage of inducing little shape distortion during the hardening process. This is because of the low processing temperature, which reduces thermal shocks and avoids phase transitions in steel.

The first ferritic nitrocarburizing methods were done at low temperatures, around 550 °C (1,022 °F), in a liquid salt bath. The first company to successfully commercialize the process was the Imperial Chemical Industries in Great Britain. ICI called their process "the cassel" due to the plant where it was developed or "Sulfinuz" treatment because it had sulfur in the salt bath. While the process was very successful with high-speed spindles and cutting tools, there were issues with cleaning the solution off because it was not very water soluble.

Because of the cleaning issues the Joseph Lucas Limited company began experimenting with gaseous forms of ferritic nitrocarburizing in the late 1950s. The company applied for a patent by 1961. It produced a similar surface finish as the Sulfinuz process with the exception of the formation of sulfides. The atmosphere consisted of ammonia, hydrocarbon gases, and a small amount of other carbon-containing gases.


...
Wikipedia

...