Fermi liquid theory (also known as Landau–Fermi liquid theory) is a theoretical model of interacting fermions that describes the normal state of most metals at sufficiently low temperatures. The interaction between the particles of the many-body system does not need to be small. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the Fermi gas (i.e. non-interacting fermions), and why other properties differ.
Important examples of where Fermi liquid theory has been successfully applied are most notably electrons in most metals and Liquid He-3. Liquid He-3 is a Fermi liquid at low temperatures (but not low enough to be in its superfluid phase.) He-3 is an isotope of helium, with 2 protons, 1 neutron and 2 electrons per atom. Because there is an odd number of fermions inside the nucleus, the atom itself is also a fermion. The electrons in a normal (non-superconducting) metal also form a Fermi liquid, as do the nucleons (protons and neutrons) in an atomic nucleus. Strontium ruthenate displays some key properties of Fermi liquids, despite being a strongly correlated material, and is compared with high temperature superconductors like cuprates.