In chemistry, a fatty amine is any amine attached to a hydrocarbon chain of eight or more carbon atoms in length. These compounds are classified as oleochemicals. More commonly fatty amines are derived from C12-C18 hydrocarbons, which in turn are derived from the more abundant fatty acids. They are often mixtures. Commercially important members include coco amine, oleylamine, tallow amine, and soya amine. Some applications of these compounds are in fabric softeners, froth flotation agents (purification of ores), and corrosion inhibitors. They are the basis for a variety of cosmetic formulations.
Fatty amines are commonly prepared from fatty acids; which are themselves obtained from natural sources, typically seed-oils. The overall reaction is sometimes referred to as the Nitrile Process and begins with a reaction between the fatty acid and ammonia at high temperature (>250 °C) and in the presence of a metal oxide catalyst (e.g., alumina or zinc oxide) to give the fatty nitrile.
The fatty amine is obtained from this by hydrogenation with any of a number of reagents, including Raney nickel or cobalt, and copper chromite catalysts. When conducted in the presence of excess ammonia the hydrogenation affords the primary amines.
In the absence of ammonia, secondary and tertiary amines are produced.
Alternatively, secondary and tertiary fatty amines can be generated directly from the reaction of fatty alcohols with alkylamines.. For some applications, the primary and secondary amines are often subjected to the Leuckart reaction. This reaction effects N-methylation using formaldehyde with formic acid as the reductant. These tertiary amines are precursors to quaternary ammonium salts using for a variety of applications.