*** Welcome to piglix ***

Equol

Equol
Equol structure.png
Names
IUPAC name
(3S)-3-(4-Hydroxyphenyl)-7-chromanol
Other names
4',7-Isoflavandiol
Identifiers
531-95-3 YesY
3D model (Jmol) Interactive image
Interactive image
ChEMBL ChEMBL198877 YesY
ChemSpider 82594 YesY
ECHA InfoCard 100.007.749
KEGG C14131 YesY
PubChem 91469
Properties
C15H14O3
Molar mass 242.27 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Equol (4',7-isoflavandiol) is an isoflavandiol metabolized from daidzein, a type of isoflavone, by bacterial flora in the intestines. While endogenous estrogenic hormones such as estradiol are steroids, equol is a non-steroidal estrogen. However, only about 30-50% of people have intestinal bacteria that make equol. Equol can exist in two enantiomeric forms, (S)-equol and (R)-equol. (S)-Equol preferentially binds estrogen receptor beta.

(S)-Equol was first isolated from horse urine in 1932, and the name was suggested by this equine connection. Since then, equol has been found in the urine or plasma of many other animal species, although these animals have significant differences in their effectiveness in metabolizing the soy isoflavone daidzein into equol. In 1980, scientists reporting the discovery of equol in humans. The ability of (S)-equol to play a role in the treatment of estrogen- or androgen-mediated diseases or disorders was first proposed in 1984.

Equol is a compound that can exist in two mirror image forms known as the enantiomers, (S)-equol and (R)-equol. However, only (S)-equol is produced in humans and animals with the ability to produce equol after soy isoflavone consumption. (S)-Equol is not of plant origin. It is a metabolite of the soy isoflavone daidzein. (S)-equol thus is characterized as an isoflavan. In contrast, R-equol is not made in humans, but can be chemically synthesized, such as in the laboratory. The molecular and physical structure of (S)-equol is similar to that of the hormone estradiol.

Not all humans can produce (S)-equol after soy consumption. The ability to do so depends on having certain strains of bacteria living within the intestine. Twenty-one different strains of intestinal bacteria cultured from humans have the ability to transform daidzein into (S)-equol or a related intermediate compound. Several studies indicate that only 25 to 30 percent of the adult population of Western countries produces (S)-equol after eating soy foods containing isoflavones, significantly lower than the reported 50 to 60 percent frequency of equol-producers in adults from Japan, Korea, or China. Vegetarians are more capable of transforming daidzein in this substance too. In research studies, the ability of a person to produce (S)-equol is determined with a standardized test in which the person, who has not had antibiotics for at least a month prior to testing, drinks two 240 milliliter glasses of soy milk or eats a soy food equivalent for three days followed by measurement of (S)-equol concentrations in their urine on the test's fourth day.Seaweed and dairy consumption enhances the production of equol.


...
Wikipedia

...