Edward Schunck | |
---|---|
Born |
Manchester, Lancashire, England, UK |
16 August 1820
Died | 13 January 1903 Kersal, Broughton, Salford, Lancashire, England, UK |
(aged 82)
Residence | England |
Nationality | British |
Alma mater |
University of Berlin, University of Gießen, |
Doctoral advisor |
William Henry, Justus Liebig |
Known for | work with dyes |
Notable awards | Davy Medal (1899) |
Henry Edward Schunck (16 August 1820 – 13 January 1903) was a British chemist who did much work with dyes.
Henry Edward Schunck was born in Manchester, the son of Martin Schunck, a German merchant. He started studying chemistry in Manchester with William Henry. The young Schunck was sent to further his chemical studies to Berlin where he studied under Heinrich Rose (1795–1864) who discovered niobium, diligently analysed minerals and other inorganic substances and studied the chemistry of titanium, phosphorus, arsenic, antimony, sulfur, selenium and tellurium. Schunck also studied at Berlin under Heinrich Gustav Magnus (1802–1870) who published over 80 papers on many diverse topics in chemistry and physics. After studying in Berlin he received his PhD under Justus Liebig at the University of Gießen.
It was from Gießen that in 1841 he published his first research paper, in Liebig's famous journal Annalen der Chemie. His topic concerned the effect of nitric acid on aloes. Schunck published his results in two papers in 1841 and 1848. The reaction between the aloe and nitric acid gives among other products, aloetic acid which on further reaction is converted into chrysammic acid. Glover (1855) describes the preparation: "Chrysammic acid ... is obtained by steeping 1 part of aloes in 8 of nitric acid, sp. gr. 1.37, and heating the mass in a porcelain capsule until the chief part of the action is over, then distilling off in a retort two-thirds of the nitric acid ; three or four parts of nitric acid are afresh introduced into the retort, and the whole kept for two or three days at a temperature near to boiling point. After disengagement of gas has ceased, water is added to the residue, which forms a precipitate - the chrysammic acid. The mother liquid contains oxalic and chrysolipic acids, which latter appears to be picric." Schunck analysed samples of chrysammic acid, now known to be 1,8–dihydroxy–2,4,5,7–tetranitroanthraquinone, and several of its metal salts, concluding that the formula of the acid was C15H3N4O12. This is very near to the currently accepted formula of C14H4N4O12 which was obtained by Mulder a few years later.