Viscosity | |
---|---|
A simulation of liquids with different viscosities. The liquid on the left has lower viscosity than the liquid on the right.
|
|
Common symbols
|
η, μ |
SI unit | Pa·s = (N·s)/m2 = kg/(s·m) |
Derivations from
other quantities |
μ = G·t |
The viscosity of a fluid is a measure of its resistance to gradual deformation by shear stress or tensile stress. For liquids, it corresponds to the informal concept of "thickness"; for example, honey has a much higher viscosity than water.
Viscosity is a property of the fluid which opposes the relative motion between the two surfaces of the fluid in a fluid that are moving at different velocities. When the fluid is forced through a tube, the particles which compose the fluid generally move more quickly near the tube's axis and more slowly near its walls; therefore some stress (such as a pressure difference between the two ends of the tube) is needed to overcome the friction between particle layers to keep the fluid moving. For a given velocity pattern, the stress required is proportional to the fluid's viscosity.
A fluid that has no resistance to shear stress is known as an ideal or inviscid fluid. Zero viscosity is observed only at very low temperatures in superfluids. Otherwise, all fluids have positive viscosity, and are technically said to be viscous or viscid. In common parlance, however, a liquid is said to be viscous if its viscosity is substantially greater than that of water, and may be described as mobile if the viscosity is noticeably less than water. A fluid with a relatively high viscosity, such as pitch, may appear to be a solid.
The word "viscosity" is derived from the Latin "viscum", meaning mistletoe and also a viscous glue made from mistletoe berries.
The dynamic (shear) viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different speeds. It can be defined through the idealized situation known as a Couette flow, where a layer of fluid is trapped between two horizontal plates, one fixed and one moving horizontally at constant speed . This fluid has to be homogeneous in the layer and at different shear stresses. (The plates are assumed to be very large, so that one need not consider what happens near their edges.)