*** Welcome to piglix ***

Dirac monopole


A magnetic monopole is a hypothetical elementary particle in particle physics that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). In more technical terms, a magnetic monopole would have a net "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence.

Magnetism in bar magnets and electromagnets does not arise from magnetic monopoles. There is no experimental evidence that magnetic monopoles exist.

Some condensed matter systems contain effective (non-isolated) magnetic monopole quasi-particles, or contain phenomena that are mathematically analogous to magnetic monopoles.

Many early scientists attributed the magnetism of lodestones to two different "magnetic fluids" ("effluvia"), a north-pole fluid at one end and a south-pole fluid at the other, which attracted and repelled each other in analogy to positive and negative electric charge. However, an improved understanding of electromagnetism in the nineteenth century showed that the magnetism of lodestones was properly explained by Ampère's circuital law, not magnetic monopole fluids. Gauss's law for magnetism, one of Maxwell's equations, is the mathematical statement that magnetic monopoles do not exist. Nevertheless, it was pointed out by Pierre Curie in 1894 that magnetic monopoles could conceivably exist, despite not having been seen so far.

The quantum theory of magnetic charge started with a paper by the physicist Paul A.M. Dirac in 1931. In this paper, Dirac showed that if any magnetic monopoles exist in the universe, then all electric charge in the universe must be quantized (Dirac quantization condition). The electric charge is, in fact, quantized, which is consistent with (but does not prove) the existence of monopoles.


...
Wikipedia

...