*** Welcome to piglix ***

Ampère's circuital law


In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law that André-Marie Ampère discovered in 1823) relates the integrated magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell (not Ampère) derived it using hydrodynamics in his 1861 paper "On Physical Lines of Force" and it is now one of the Maxwell equations, which form the basis of classical electromagnetism.

The original form of Maxwell's circuital law, which he derived in his 1855 paper "On Faraday's Lines of Force" based on an analogy to hydrodynamics, relates magnetic fields to electric currents that produce them. It determines the magnetic field associated with a given current, or the current associated with a given magnetic field.

The original circuital law is only a correct law of physics in a magnetostatic situation, where the system is static except possibly for continuous steady currents within closed loops. For systems with electric fields that change over time, the original law (as given in this section) must be modified to include a term known as Maxwell's correction (see below).

The original circuital law can be written in several different forms, which are all ultimately equivalent:

The integral form of the original circuital law is a line integral of the magnetic field around some closed curve C (arbitrary but must be closed). The curve C in turn bounds both a surface S which the electric current passes through (again arbitrary but not closed—since no three-dimensional volume is enclosed by S), and encloses the current. The mathematical statement of the law is a relation between the total amount of magnetic field around some path (line integral) due to the current which passes through that enclosed path (surface integral).


...
Wikipedia

...