A dilbit is a bitumen (asphalt) diluted with one or more lighter petroleum products, typically natural-gas condensates such as naphtha. Diluting bitumen makes it much easier to transport, for example in pipelines. Per the Alberta Oil Sands Bitumen Valuation Methodology, "Dilbit Blends" means "Blends made from heavy crudes and/or bitumens and a diluent, usually natural-gas condensate, for the purpose of meeting pipeline viscosity and density specifications, where the density of the diluent included in the blend is less than 800 kg/m3." If the diluent density is greater than or equal to 800 kg/m3, the diluent is typically synthetic crude and accordingly the blend is called synbit.
Bitumen and heavy oils are often produced from remote deposits such as the Athabasca oil sands in Alberta, Canada and the Orinoco tar sands in Venezuela. Before 1980, most produced bitumen was transported by truck, but trucking is seasonally restricted and relatively inefficient and expensive compared to pipeline transport. However, bitumen in its undiluted state is too viscous and dense to be transported by pipeline. To create a fluid capable of transportation by pipeline, bitumen must be mixed with a fluid that has much lower viscosity and will keep bitumen from precipitating out of the mixture. By 1985 and demonstrating the effectiveness of dilbit, Alberta Energy Company was operating dual pipelines to transport diluent from Edmonton to Cold Lake and dilbit from Cold Lake to Edmonton. Dilbit is now also transported by rail.
The most common diluent used to dilute bitumen is natural gas condensate (NGC), especially the naphtha component. Due to insufficient quantity of natural gas condensate in Alberta, bitumen shippers also use and synthetic crude oil (SCO) as diluent, and import a considerable amount from the U.S. Although SCO requires a higher volume percentage to achieve the same viscosity, at least one study found that SCO provides better blend stability than NGC. Shippers dilute bitumen before shipment in order to meet viscosity and density requirements found in common carrier pipeline tariff rules. A National Energy Board study assumed a standard dilbit containing 33% condensate (resulting in product with "21.5 °API and sulphur content of 3.3 percent") and synbit containing 50% SCO. By selecting different diluent types and blend ratios, bitumen shippers attempt to lower component costs, increase blend value, and maintain pipeline transportability. The blend ratio may consist of 25 to 55% diluent by volume, depending on characteristics of the bitumen and diluent, pipeline specifications, operating conditions, and refinery requirements.