*** Welcome to piglix ***

Diffusion imaging

Diffusion MRI
Medical diagnostics
Illus dti.gif
DTI Color Map
MeSH D038524
[]

Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) is the use of specific MRI sequences as well as software that generates images from the resulting data, that uses the diffusion of water molecules to generate contrast in MR images. It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not free, but reflects interactions with many obstacles, such as macromolecules, fibers, and membranes. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. A special kind of DWI, diffusion tensor imaging (DTI), has been used extensively to map white matter tractography in the brain.

Because Diffusion MRI can reveal abnormalities in white matter fiber structure and provide models of brain connectivity, it is rapidly becoming a standard for white matter disorders. The ability to visualize anatomical connections between different parts of the brain, noninvasively and on an individual basis, has emerged as a major breakthrough for neuroscience's Human Connectome Project. More recently, a new field has emerged, diffusion functional MRI (dfMRI) as it was suggested that with DWI one could also get images of neuronal activation in the brain. Finally, the method of diffusion MRI has also been shown to be sensitive to perfusion, as the movement of water in blood vessels mimics a random process, intravoxel incoherent motion (IVIM). IVIM dMRI is rapidly becoming a major method to obtain images of perfusion in the body, especially for cancer detection and monitoring.

In diffusion weighted imaging (DWI), the intensity of each image element (voxel) reflects the best estimate of the rate of water diffusion at that location. Because the mobility of water is driven by thermal agitation and highly dependent on its cellular environment, the hypothesis behind DWI is that findings may indicate (early) pathologic change. For instance, DWI is more sensitive to early changes after a stroke than more traditional MRI measurements such as T1 or T2 relaxation rates. A variant of diffusion weighted imaging, diffusion spectrum imaging (DSI), was used in deriving the Connectome data sets; DSI is a variant of diffusion-weighted imaging that is sensitive to intra-voxel heterogeneities in diffusion directions caused by crossing fiber tracts and thus allows more accurate mapping of axonal trajectories than other diffusion imaging approaches.


...
Wikipedia

...