Diabetic neuropathy | |
---|---|
Classification and external resources | |
Specialty | Endocrinology |
ICD-10 | E10.4, E11.4, E12.4, E13.4, E14.4 |
ICD-9-CM | 250.6 |
MedlinePlus | 000693 |
MeSH | D003929 |
Diabetic neuropathies are nerve damaging disorders associated with diabetes mellitus. These conditions are thought to result from diabetic microvascular injury involving small blood vessels that supply nerves (vasa nervorum) in addition to macrovascular conditions that can culminate in diabetic neuropathy. Relatively common conditions which may be associated with diabetic neuropathy include third nerve palsy; mononeuropathy; mononeuropathy multiplex; diabetic amyotrophy; a painful polyneuropathy; autonomic neuropathy; and thoracoabdominal neuropathy.
Diabetic neuropathy affects all peripheral nerves including pain fibers, motor neurons and the autonomic nervous system. It, therefore, can affect all organs and systems, as all are innervated. There are several distinct syndromes based on the organ systems and members affected, but these are by no means exclusive. A patient can have sensorimotor and autonomic neuropathy or any other combination. Signs and symptoms vary depending on the nerve(s) affected and may include symptoms other than those listed. Symptoms usually develop gradually over years.
Symptoms may include the following:
The following factors are thought to be involved in the development of diabetic neuropathy:
Vascular and neural diseases are closely related and intertwined. Blood vessels depend on normal nerve function, and nerves depend on adequate blood flow. The first pathological change in the small blood vessels is narrowing of the blood vessels. As the disease progresses, neuronal dysfunction correlates closely with the development of blood vessel abnormalities, such as capillary basement membrane thickening and endothelial hyperplasia, which contribute to diminished oxygen tension and hypoxia. Neuronal ischemia is a well-established characteristic of diabetic neuropathy. Blood vessel opening agents (e.g., ACE inhibitors, α1-antagonists) can lead to substantial improvements in neuronal blood flow, with corresponding improvements in nerve conduction velocities. Thus, small blood vessel dysfunction occurs early in diabetes, parallels the progression of neural dysfunction, and may be sufficient to support the severity of structural, functional, and clinical changes observed in diabetic neuropathy.