Proximal diabetic neuropathy | |
---|---|
Synonyms | Diabetic Amyotrophy |
Classification and external resources | |
Specialty | neurology |
ICD-10 | N312 |
ICD-9-CM | 353.5 |
OMIM | 603933 |
MedlinePlus | 000693 |
Proximal diabetic neuropathy, more commonly known as diabetic amyotrophy, is a nerve disorder that results as a complication of diabetes mellitus. It can affect the thighs, hips, buttocks or lower legs. Proximal diabetic neuropathy is a peripheral nerve disease (diabetic neuropathy) characterized by muscle wasting or weakness, pain, or changes in sensation/numbness of the leg. Diabetic neuropathy is an uncommon complication of diabetes. It is a type of lumbosacral plexopathy, or adverse condition affecting the lumbosacral plexus.
There are a number of ways that diabetes damages the nerves, all of which seem to be related to increased blood sugar levels over a long period of time. Proximal diabetic neuropathy is one of four types of diabetic neuropathy.
Proximal diabetic neuropathy can occur in type 2 and type 1 diabetes mellitus patients however, it is most commonly found in type 2 diabetics. Proximal neuropathy is the second most common type of diabetic neuropathy and can be resolved with time and treatment.
Symptoms of proximal diabetic neuropathy depend on the region of the plexus which is affected. The first symptom is usually pain in the buttocks, hips, thighs or legs. This pain most commonly affects one side of the body and can either start gradually or come on suddenly. This is often followed by variable weakness in the proximal muscles of the lower limbs. These symptoms, although often beginning unilaterally, can also spread . Weakness in proximal diabetic neuropathy is caused by denervation of the specific muscles innervated by regions of the plexus affected and can thus these muscles may start exhibiting fasciculations.
Note that diabetic amyotrophy is a condition caused by diabetes mellitus, but separate from the more common condition of polyneuropathy.
The nerve damage associated with the disease was first thought to be caused by metabolic changes such as endoneurial microvessel disease, which is the degeneration of pericytes due to hyperglycemia, and the reproduction of basement membranes when the pericytes are no longer regulating their cell cycle. The decreased size of the lumen plus the absence of the pericyte, which regulate capillary blood flow and phagocytosis of cellular debris, leads to ischemia. Nerve biopsies have shifted the view toward an immune mechanism that causes Micro Vasculitis, which could eventually lead to ischemia. Experimental treatments using immunosuppressive proteins have provided further corroborative evidence to the immune mechanism theory. Although this disease does occur in patients without diabetes the prevalence is much greater in the diabetic indicating that although hyperglycemia does not directly cause the nerve damage it may play a role