*** Welcome to piglix ***

Dess–Martin periodinane

Dess–Martin periodinane
Chemical structure of the Dess–Martin periodinane
Ball-and-stick model of the Dess–Martin periodinane
Names
IUPAC name
1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one
Other names
Dess–Martin periodinane
Identifiers
3D model (Jmol)
ChemSpider
ECHA InfoCard 100.197.885
PubChem CID
Properties
C13H13IO8
Molar mass 424.14 g/mol
Appearance white powder, chips,
crystals or crystalline
powder and/or chunks
Density 1.362 g/cm3 solid
Melting point 103 to 133 °C (217 to 271 °F; 376 to 406 K)
Related compounds
Related compounds
2-Iodoxybenzoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Dess–Martin periodinane (DMP) is a chemical reagent used to oxidize primary alcohols to aldehydes and secondary alcohols to ketones. This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions (room temperature, neutral pH), shorter reaction times, higher yields, simplified workups, high chemoselectivity, tolerance of sensitive functional groups, and a long shelf life. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the reagent in 1983. It is based on IBX, but due to the acetate groups attached to the central iodine atom, DMP is much more reactive than IBX and is much more soluble in organic solvents.

The most friendly synthesis of IBX has been determined to be treating 2-iodobenzoic acid with oxone in water, at elevated temperatures for 3 hours. IBX is then acylated using Ireland and Liu’s modifications from the original procedure. These modifications allowed for higher yields and a simplified work up procedure. The resulted solids can be obtained via filtration and washing with ether. Ireland and Liu used a catalytic amount of tosylic acid, which allowed the reaction to complete in less than 2 hours (compared to the classic synthesis, utilizing 24 hours) and in yields exceeding 90%.

The classic method presented by Boeckman and Mullins involved heating a solution of potassium bromate, sulfuric acid, 2-iodobenzoic acid to afford IBX (1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide, 2-iodoxybenzoic acid). IBX was then acylated using acetic acid and acetic anhydride.


...
Wikipedia

...