Clinical data | |
---|---|
License data |
|
Pregnancy category |
|
Routes of administration |
Oral |
ATC code | |
Legal status | |
Legal status | |
Pharmacokinetic data | |
Bioavailability | 70% |
Protein binding | 99% |
Metabolism | Hepatic glucuronidation |
Biological half-life | 8 to 16 hours |
Excretion | Fecal (84%) and renal (8%) |
Identifiers | |
|
|
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEMBL | |
ECHA InfoCard | 100.211.077 |
Chemical and physical data | |
Formula | C21H15N3O4 |
Molar mass | 373.362 g/mol |
3D model (Jmol) | |
|
|
|
|
(what is this?) |
Deferasirox (marketed as Exjade,Desirox, Defrijet, Desifer, Rasiroxpine and Jadenu) is an oral iron chelator. Its main use is to reduce chronic iron overload in patients who are receiving long-term blood transfusions for conditions such as beta-thalassemia and other chronic anemias. It is the first oral medication approved in the USA for this purpose.
It was approved by the United States Food and Drug Administration (FDA) in November 2005. According to FDA (May 2007), renal failure and cytopenias have been reported in patients receiving deferasirox oral suspension tablets. It is approved in the European Union by the European Medicines Agency (EMA) for children 6 years and older for chronic iron overload from repeated blood transfusions.
The half-life of deferasirox is between 8 and 16 hours allowing once a day dosing. Two molecules of deferasirox are capable of binding to 1 atom of iron which are subsequently eliminated by fecal excretion. Its low molecular weight and high lipophilicity allows the drug to be taken orally unlike deferoxamine which has to be administered by IV route (intravenous infusion). Together with deferiprone, deferasirox seems to be capable of removing iron from cells (cardiac myocytes and hepatocytes) as well as removing iron from the blood.
Deferasirox can be prepared from simple commercially available starting materials (salicylic acid, salicylamide and 4-hydrazinobenzoic acid) in the following two-step synthetic sequence:
The condensation of salicyloyl chloride (formed in situ from salicylic acid and thionyl chloride) with salicylamide under dehydrating reaction conditions results in formation of 2-(2-hydroxyphenyl)-1,3(4H)-benzoxazin-4-one. This intermediate is isolated and reacted with 4-hydrazinobenzoic acid in the presence of base to give 4-(3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl)benzoic acid (Deferasirox).