*** Welcome to piglix ***

De Laval nozzle


A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube that is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a hot, pressurized gas passing through it to a higher supersonic speed in the axial (thrust) direction, by converting the heat energy of the flow into kinetic energy. Because of this, the nozzle is widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines.

Similar flow properties have been applied to jet streams within astrophysics.

The nozzle was developed by Swedish inventor Gustaf de Laval in 1888 for use on a steam turbine.

This principle was first used in a rocket engine by Robert Goddard. Very nearly all modern rocket engines that employ hot gas combustion use de Laval nozzles.

Its operation relies on the different properties of gases flowing at subsonic and supersonic speeds. The speed of a subsonic flow of gas will increase if the pipe carrying it narrows because the mass flow rate is constant. The gas flow through a de Laval nozzle is isentropic (gas entropy is nearly constant). In a subsonic flow the gas is compressible, and sound will propagate through it. At the "throat", where the cross-sectional area is at its minimum, the gas velocity locally becomes sonic (Mach number = 1.0), a condition called choked flow. As the nozzle cross-sectional area increases, the gas begins to expand, and the gas flow increases to supersonic velocities, where a sound wave will not propagate backwards through the gas as viewed in the frame of reference of the nozzle (Mach number > 1.0).


...
Wikipedia

...