Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.
Choked flow is a fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a restriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe) into a lower pressure environment the fluid velocity increases. At initially subsonic upstream conditions, the conservation of mass principle requires the fluid velocity to increase as it flows through the smaller cross-sectional area of the restriction. At the same time, the Venturi effect causes the static pressure, and therefore the density, to decrease downstream beyond the restriction. Choked flow is a limiting condition where the mass flow will not increase with a further decrease in the downstream pressure environment while upstream pressure is fixed. Note that the limited parameter is velocity, and thus mass flow can be increased with increased upstream pressure (increased fluid density).
For homogeneous fluids, the physical point at which the choking occurs for adiabatic conditions, is when the exit plane velocity is at sonic conditions i.e. at a Mach number of 1. At choked flow, the mass flow rate can be increased only by increasing density upstream and at the choke point.
The choked flow of gases is useful in many engineering applications because the mass flow rate is independent of the downstream pressure, and depends only on the temperature and pressure and hence the density of the gas on the upstream side of the restriction. Under choked conditions, valves and calibrated orifice plates can be used to produce a desired mass flow rate.
If the fluid is a liquid, a different type of limiting condition (also known as choked flow) occurs when the Venturi effect acting on the liquid flow through the restriction causes a decrease of the liquid pressure beyond the restriction to below that of the liquid's vapor pressure at the prevailing liquid temperature. At that point, the liquid will partially flash into bubbles of vapor and the subsequent collapse of the bubbles causes cavitation. Cavitation is quite noisy and can be sufficiently violent to physically damage valves, pipes and associated equipment. In effect, the vapor bubble formation in the restriction prevents the flow from increasing any further.