*** Welcome to piglix ***

DHQ synthase

3-dehydroquinate synthase
3-dehydroquinate synthase 3CLH.png
Ribbon representation of the Helicobacter pylori 3-dehydroquinate synthase.
Identifiers
EC number 4.2.3.4
CAS number 37211-77-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
3-dehydroquinate synthase
Identifiers
Symbol DHQ_synthase
Pfam PF01761
InterPro IPR002658
SCOP 1dqs
SUPERFAMILY 1dqs

In enzymology, a 3-dehydroquinate synthase (EC 4.2.3.4) is an enzyme that catalyzes the chemical reaction

Hence, this enzyme has one substrate, 3-deoxy-arabino-heptulosonate 7-phosphate, and two products, 3-dehydroquinate and phosphate. The protein uses NAD+ to catalyze the reaction. This reaction is part of the shikimate pathway which is involved in the biosynthesis of aromatic amino acids.

3-Dehydroquinate synthase belongs to the family of lyases, to be specific those carbon-oxygen lyases acting on phosphates. This enzyme participates in phenylalanine, tyrosine, and tryptophan biosynthesis. It employs one cofactor, cobalt.

The shikimate pathway is composed of seven steps, each catalyzed by an enzyme. The shikimate pathway is responsible for producing the precursors for aromatic amino acids, which are essential to our diets because we cannot synthesize them in our bodies. Only plants, bacteria, and microbial eukaryotes are capable of producing aromatic amino acids. The pathway ultimately converts phosphoenolpyruvate and 4-erythrose phosphate into chorismate, the precursor to aromatic amino acids. 3-Dehydroquinate synthase is the enzyme that catalyzes reaction in the second step of this pathway. This second step of the reaction eliminates a phosphate from 3-deoxy-D-arabino-heptulosonate 7-phosphate, which results in 3-dehydroquinate. 3-Dehydroquinate synthase is a monomeric enzyme, and has a molecular weight of 39,000. 3-dehydroquinate synthase is activated by inorganic phosphate, and requires NAD+ for activity, although the reaction in total is neutral when catalyzed by an enzyme.


...
Wikipedia

...