*** Welcome to piglix ***

Cyclophane


A cyclophane is a hydrocarbon consisting of an aromatic unit (typically a benzene ring) and an aliphatic chain that forms a bridge between two non-adjacent positions of the aromatic ring. More complex derivatives with multiple aromatic units and bridges forming cagelike structures are also known. Cyclophanes are well-studied in organic chemistry because they adopt unusual chemical conformations due to build-up of strain.

Basic cyclophane types are [n]metacyclophanes (I) in scheme 1, [n]paracyclophanes (II) and [n,n']cyclophanes (III). the prefixes meta and para correspond to the usual arene substitution patterns and n refers to the number of atoms making up the bridge.

Paracyclophanes adopt the boat conformation normally observed in cyclohexanes but are still able to retain aromaticity. The smaller the value of n the larger the deviation from aromatic planarity. In [6]paracyclophane which is one of the smallest, yet stable, cyclophanes X-ray crystallography shows that the aromatic bridgehead carbon atom makes an angle of 20.5° with the plane. The benzyl carbons deviate by another 20.2°. The carbon-to-carbon bond length alternation has increased from 0 for benzene to 39 pm.

In organic reactions [6]cyclophane tends to react as a diene derivative and not as an arene. With bromine it gives 1,4-addition and with chlorine the 1,2-addition product forms.

Yet the proton NMR spectrum displays the aromatic protons and their usual deshielded positions around 7.2 ppm and the central methylene protons in the aliphatic bridge are even severely shielded to a position of around - 0.5 ppm, that is, even shielded compared to the internal reference tetramethylsilane. With respect to the diamagnetic ring current criterion for aromaticity this cyclophane is still aromatic.


...
Wikipedia

...