In statistics the Cramér–von Mises criterion is a criterion used for judging the goodness of fit of a cumulative distribution function compared to a given empirical distribution function , or for comparing two empirical distributions. It is also used as a part of other algorithms, such as minimum distance estimation. It is defined as
In one-sample applications is the theoretical distribution and is the empirically observed distribution. Alternatively the two distributions can both be empirically estimated ones; this is called the two-sample case.