*** Welcome to piglix ***

Copiapite

Copiapite
Copiapite-159310.jpg
Copiapite from the Bolesław Mine, Kłodzko District, Lower Silesia, Poland
General
Category Sulfate minerals
Formula
(repeating unit)
Strunz classification 7.DB.35
Crystal system Triclinic
Crystal class Pinacoidal (1)
(same H-M symbol)
Space group P1
Unit cell a = 7.337 Å, b = 18.76 Å,
c = 7.379 Å; α = 91.47°,
β = 102.18°, γ = 98.95°; Z = 1
Identification
Color Sulfur-yellow to orange when crystalline, greenish-yellow to olive-green when massive
Crystal habit Tabular pseudo-orthorhombic platy crystals, typically in scaly incrustations or granular pulverulent aggregates
Twinning Contact twins
Cleavage Perfect on {010}, imperfect on {101}
Fracture Irregular/uneven, micaceous
Tenacity Fragile
Mohs scale hardness 2.5 - 3
Luster Pearly on {010}
Diaphaneity Transparent to translucent
Specific gravity 2.04–2.17
Optical properties Biaxial (+)
Refractive index nα = 1.506 - 1.540 nβ = 1.528 - 1.549 nγ = 1.575 - 1.600
Birefringence δ = 0.069
Pleochroism X = Y = pale yellow to colorless; Z = sulfur-yellow
2V angle Measured: 45° to 74°, Calculated: 48° to 72°
Solubility Soluble in water
References

Copiapite is a hydrated iron sulfate mineral with formula: Copiapite can also refer to a mineral group, the copiapite group.

Copiapite is strictly a secondary mineral forming from the weathering or oxidation of iron sulfide minerals or sulfide-rich coal. Its most common occurrence is as the end member mineral from the rapid oxidation of pyrite. It also occurs rarely with fumaroles. It occurs with melanterite, alunogen, fibroferrite, halotrichite, botryogen, butlerite and amarantite. It is by far the most common mineral in the copiapite group.


...
Wikipedia

...