Nucleophilic conjugate addition is a type of organic reaction. Ordinary nucleophilic additions or 1,2-nucleophilic additions deal mostly with additions to carbonyl compounds. Simple alkene compounds do not show 1,2 reactivity due to lack of polarity, unless the alkene is activated with special substituents. With α,β-unsaturated carbonyl compounds such as cyclohexenone it can be deduced from resonance structures that the β position is an electrophilic site which can react with a nucleophile. The negative charge in these structures is stored as an alkoxide anion. Such a nucleophilic addition is called a nucleophilic conjugate addition or 1,4-nucleophilic addition. The most important active alkenes are the aforementioned conjugated carbonyls and acrylonitriles.
Conjugate addition is the vinylogous counterpart of direct nucleophilic addition. A nucleophile reacts with a α,β-unsaturated carbonyl compound in the β position. The negative charge carried by the nucleophile is now delocalized in the alkoxide anion and the α carbon carbanion by resonance. Protonation leads through Keto-enol tautomerism to the saturated carbonyl compound. In vicinal difunctionalization the proton is replaced by another electrophile.
Conjugate addition is effective in the formation of new carbon-carbon bonds with the aid of organometallic reagents such as the organozinc iodide reaction with methylvinylketone.