*** Welcome to piglix ***

Resonance structure


In chemistry, resonance or mesomerism is a way of describing delocalized electrons within certain molecules or polyatomic ions where the bonding cannot be expressed by one single Lewis structure. A molecule or ion with such delocalized electrons is represented by several contributing structures (also called resonance structures or canonical structures).

Each contributing structure can be represented by a Lewis structure, with only an integer number of covalent bonds between each pair of atoms within the structure. Several Lewis structures are used collectively to describe the actual molecular structure, which is an approximate intermediate between the canonical forms called a resonance hybrid. Contributing structures differ only in the position of electrons, not in the position of nuclei.

Electron delocalization lowers the potential energy of the substance and thus makes it more stable than any of the contributing structures. The difference between the potential energy of the actual structure and that of the contributing structure with the lowest potential energy is called the resonance energy or delocalization energy.

Resonance is distinguished from isomerization. An isomer is a molecule with the same chemical formula but with different arrangements of atoms in space. Resonance contributors of a molecule, on the contrary, can only differ by the arrangements of electrons. Therefore, the resonance hybrid cannot be represented by a combination of isomers.

The concept first appeared in 1899 in Johannes Thiele's "Partial Valence Hypothesis" to explain the unusual stability of benzene which would not be expected from August Kekulé's structure proposed in 1865 with alternating single and double bonds. Benzene undergoes substitution reactions, rather than addition reactions as typical for alkenes. He proposed that the carbon-carbon bond in benzene is intermediate of a single and double bond.

The mechanism of resonance was introduced into quantum mechanics by Werner Heisenberg in 1926 in a discussion of the quantum states of the helium atom. He compared the structure of the helium atom with the classical system of resonating coupled harmonic oscillators. In the classical system, the coupling produces two modes, one of which is lower in frequency than either of the uncoupled vibrations; quantum mechanically, this lower frequency is interpreted as a lower energy. Linus Pauling used this mechanism to explain the partial valence of molecules in 1928, and developed it further in a series of papers in 1931-33. The alternative term mesomerism popular in German and French publications with the same meaning was introduced by C. K. Ingold in 1938, but did not catch on in the English literature. The current concept of mesomeric effect has taken on a related but different meaning. The double headed arrow was introduced by the German chemist Fritz Arndt who preferred the German phrase zwischenstufe or intermediate stage.


...
Wikipedia

...