*** Welcome to piglix ***

Congenital hyperinsulinism

Congenital hyperinsulinism
InsulinHexamer.jpg
Insulin (which this condition creates in excess)
Classification and external resources
ICD-9-CM 251.1
OMIM 256450
eMedicine article/923538
MeSH D044903
[]

Congenital hyperinsulinism is a medical term referring to a variety of congenital disorders in which hypoglycemia is caused by excessive insulin secretion. Congenital forms of hyperinsulinemic hypoglycemia can be transient or persistent, mild or severe. These conditions are present at birth and most become apparent in early infancy. Mild cases can be treated by frequent feedings, more severe cases can be controlled by medications that reduce insulin secretion or effects

Hypoglycemia in early infancy can cause jitteriness, lethargy, unresponsiveness, or seizures. The most severe forms may cause macrosomia in utero, producing a large birth weight, often accompanied by abnormality of the pancreas. Milder hypoglycemia in infancy causes hunger every few hours, with increasing jitteriness or lethargy. Milder forms have occasionally been detected by investigation of family members of infants with severe forms, adults with the mildest degrees of congenital hyperinsulinism have a decreased tolerance for prolonged fasting. Other presentations are:

The variable ages of presentations and courses suggest that some forms of congenital hyperinsulinism, especially those involving abnormalities of KATP channel function, can worsen or improve with time the potential harm from hyperinsulinemic hypoglycemia depends on the severity, and duration. Children who have recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to the brain

The cause of congenital hyperinsulinism has been linked to anomalies in nine different genes. The diffuse form of this condition is inherited via the autosomal recessive manner(though sometimes in autosomal dominant).

In terms of the mechanism of congenital hyperinsulinism one sees that channel trafficking requires KATP channels need the shielding of ER retention signal.E282K prevents the KATP channel surface expression, the C-terminus (SUR1 subunit) is needed in KATP channel mechanism.R1215Q mutations (ABCC8 gene) affect ADP gating which in turn inhibits KATP channel.


...
Wikipedia

...