*** Welcome to piglix ***

Congenital dyserythropoietic anemia

Congenital dyserythropoietic anemia
Blausen 0761 RedBloodCells.png
CDA causes decrease in red blood cells
Classification and external resources
Specialty hematology
ICD-10 D64.4
ICD-9-CM 285.8
MeSH D000742
Orphanet 85
[]

Congenital dyserythropoietic anemia (CDA) is a rare blood disorder, similar to the thalassemias. CDA is one of many types of anemia, characterized by ineffective erythropoiesis, and resulting from a decrease in the number of red blood cells (RBCs) in the body and a less than normal quantity of hemoglobin in the blood.

The symptoms and signs of congenital dyserythropoietic anemia are consistent with:

CDA may be transmitted by both parents autosomal recessively or dominantly and has over four different subtypes, but CDA Type I, CDA Type II, CDA Type III, and CDA Type IV are the most common. CDA type II (CDA II) is the most frequent type of congenital dyserythropoietic anemias. More than 300 cases have been described, but with the exception of a report by the International CDA II Registry, these reports include only small numbers of cases and no data on the lifetime evolution of the disease.

The diagnosis of congenital dyserythropoietic anemia can be done via sequence analysis of the entire coding region, types I, II, III and IV ( is a relatively new form of CDA that had been found, just 4 cases have been reported) according to the genetic testing registry.

Treatment of individuals with CDA usually consist of frequent blood transfusions, but this can vary depending on the type that the individual has. Patients report going every 2–3 weeks for blood transfusions. In addition, they must undertake chelation therapy to survive; either deferoxamine, deferasirox, or deferiprone to eliminate the excess iron that accumulates. Removal of the spleen and gallbladder are common. Hemoglobin levels can run anywhere between 8.0 g/dl and 11.0 g/dl in untransfused patients, the amount of blood received by the patient is not as important as their baseline pre-transfusion hemoglobin level. This is true for ferritin levels and iron levels in the organs as well, it is important for patients to go regularly for transfusions in order to maximize good health, normal ferritin levels run anywhere between 24 and 336 ng/ml, hematologists generally do not begin chelation therapy until ferritin levels reach at least 1000 ng/ml. It is more important to check iron levels in the organs through MRI scans, however, than to simply get regular blood tests to check ferritin levels, which only show a trend, and do not reflect actual organ iron content.


...
Wikipedia

...