Coextinction and cothreatened refer to the phenomena of the loss or decline of a host species resulting in the loss or endangerment of other species that depend on it, potentially leading to cascading effects across trophic levels. The term originated by the authors Stork and Lyal (1993) and was originally used to explain the extinction of parasitic insects following the loss of their specific hosts. The term is now used to describe the loss of any interacting species, including competition with their counterpart, and specialist herbivores with their food source. Coextinction is especially common when a keystone species goes extinct.
The most often cited example is that of the extinct passenger pigeon and its parasitic bird lice Columbicola extinctus and Campanulotes defectus. Recently, C. extinctus was rediscovered on the band-tailed pigeon, and C. defectus was found to be a likely case of misidentification of the existing Campanulotes flavus. However, even though the passenger pigeon lice story has a happy ending (i.e. rediscovery), coextinctions of other parasites, even on the passenger pigeon, may have occurred. Several louse species—such as Rallicola extinctus, a huia parasite—probably became extinct together with their hosts.
In recent studies, up to 50% of species have been said to go extinct in the next 50 years. This may be possible due to an example of coextinction being the loss of tropical butterfly species from Singapore attributing to the loss of their specific larval host plants. To see how possible future cases of coextinction would play out, researchers have made models to show probabilistic relationships between affiliate and host extinctions across co-evolved inter-specific systems. The subjects are pollinating Ficus Wasps and Ficus, primate parasites, (Pneumocystis Fungi, Nematode, and Lice) and their hosts, parasitic mites and lice and their avian hosts, butterflies and their larval host plants, and ant butterflies and their host ants. For all but the most host-specific affiliate groups (e.g., primate Pneumocystis fungi and primates), affiliate extinction levels may be modest at low levels of host extinction but can be expected to rise quickly as host extinctions increase to levels predicted in the near future. This curvilinear relationship between host and affiliate extinction levels may also explain, in part, why so few coextinction events have been documented to date (Koh et al 2004).