A keystone species is a species that has a disproportionately large effect on its environment relative to its abundance. Such species are described as playing a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community.
The role that a keystone species plays in its ecosystem is analogous to the role of a keystone in an arch. While the keystone is under the least pressure of any of the stones in an arch, the arch still collapses without it. Similarly, an ecosystem may experience a dramatic shift if a keystone species is removed, even though that species was a small part of the ecosystem by measures of biomass or productivity. It became a popular concept in conservation biology. Although the concept is valued as a descriptor for particularly strong inter-species interactions, and it has allowed easier communication between ecologists and conservation policy-makers, it has been criticized for oversimplifying complex ecological systems.
The concept of the keystone species was introduced in 1969 by Robert T. Paine, a professor of zoology at the University of Washington. Paine developed the concept to explain his observations and experiments on the relationship between intertidal invertebrates. In his 1966 paper, Food Web Complexity and Species Diversity, Paine described such a system in Makah Bay in Washington. In his follow-up 1969 paper, Paine proposed the keystone species concept, using Pisaster ochraceus, a species of starfish, and Mytilus californianus, a species of mussel, as a primary example. The concept became popular in conservation, and was deployed in a range of contexts and mobilized to engender support for conservation.