Names | |
---|---|
IUPAC name
(3R,4S)-8-hydroxy-3,4,5-trimethyl-6-oxo-4,6-dihydro-3H-isochromene-7-carboxylic acid
|
|
Identifiers | |
3D model (Jmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.007.508 |
KEGG | |
PubChem CID
|
|
UNII | |
|
|
|
|
Properties | |
C13H14O5 | |
Molar mass | 250.25 |
Appearance | Lemon-yellow crystals |
Melting point | 175 °C (347 °F; 448 K) (decomposes (dry conditions), when water is present 100 degrees Celsius)) |
Insoluble | |
Hazards | |
Safety data sheet | MSDS Sigma Aldrich |
GHS pictograms | |
H301, H311, H331, H351 | |
P261, P280, P301+310, P311 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Citrinin is a mycotoxin which is often found in food. It is a secondary metabolite produced by fungi that contaminate long-stored food and it causes different toxic effects, like nephrotoxic, hepatotoxic and cytotoxic effects. Citrinin is mainly found in stored grains, but sometimes also in fruits and other plant products.
Citrinin was one of the many mycotoxins which were discovered by H. Raistrick and A.C. Hetherington in the 1930s. In 1941 H. Raistrick and G. Smith identified citrinin to have a broad antibacterial activity. After this discovery the interest in citrinin rose. However, in 1946 A.M. Ambrose and F. DeEds demonstrated that citrinin was toxic in mammalians. Because of the toxicity, the interest in citrinin decreased, but there still was a lot of research. In 1948 the chemical structure was solved by W.B. Whalley and coworkers. Citrinin is a natural compound and it was first isolated from Penicillium citrinum, but it is also produced by other Penicillium species, the Monascus species and the Aspergillus species, which are all fungi. During the 1950s W.B. Whalley and A.J. Birch and others identified citrinin as a polyketide and investigated its biosynthesis using radioisotopes. During the 1980s and 1990s J. Staunton, U. Sankawa and others also investigated its biosynthesis using stable isotopes and NMR. During the mid-2000s the gene cluster for citrinin was discovered by T. Nihira and coworkers.
In 1993 the World Health Organisation International Agency for Research on Cancer started to evaluate the carcinogenic potential of mycotoxins. The health hazards of mycotoxins to humans or animals have been reviewed extensively in recent years. To ensure agricultural productivity and sustainability, animal and public health, animal welfare and the environment, maximum levels of undesirable substances in animal feed are laid down in the EU Directive of the European Parliament and the Council of 7 May 2002. While maximum levels for various mycotoxins were set for a number of food and feed products, the occurrence of citrinin is not regulated yet under these or other regulations within the European Union. No maximum levels have been reported yet by the Food and Agriculture Organization for citrinin in food and feed.