Cerebellar ataxia | |
---|---|
Classification and external resources | |
Specialty | neurology |
ICD-10 | G11.1-G11.3 |
ICD-9-CM | 334.3 |
DiseasesDB | 2218 |
MedlinePlus | 001397 |
MeSH | D002524 |
Cerebellar ataxia is a form of ataxia originating in the cerebellum.
Cerebellar ataxia can occur as a result of many diseases and presents with symptoms of an inability to coordinate balance, gait, extremity and eye movements. Lesions to the cerebellum can cause dyssynergia, dysmetria, dysdiadochokinesia, dysarthria and ataxia of stance and gait. Deficits are observed with movements on the same side of the body as the lesion (ipsilateral). Clinicians often use visual observation of people performing motor tasks in order to look for signs of ataxia.
There are many causes of cerebellar ataxia including, among others, autoimmunity to Purkinje cells or other neural cells in the cerebellum, CNS vasculitis, multiple sclerosis, infection, bleeding, infarction, tumors, direct injury, toxins (e.g., alcohol), genetic disorders, and an association with statin use.
Damage to the cerebellum, particularly to the cerebrocerebellum area and the cerebellar vermis, is almost always associated with clinical depression and often with alcoholism. Due to difficulties in mobility, self-care, everyday activities, and pain/discomfort, those with cerebellar ataxia are more likely to be diagnosed with anxiety and depression. Almost a third of patients with isolated, late onset cerebellar ataxia go on to develop multiple system atrophy.
In recent years the cerebellum's role has been observed as not purely motor. It is intimately combined with intellect, emotion and planning.
"For many years, it was thought that postural and balance disorders in cerebellar ataxia were not treatable. However, the results of several recent studies suggest that rehabilitation can relieve postural disorders in patients with cerebellar ataxia...There is now moderate level evidence that rehabilitation is efficient to improve postural capacities of patients with cerebellar ataxia – particularly in patients with degenerative ataxia or multiple sclerosis. Intensive rehabilitation programs with balance and coordination exercises are necessary. Although techniques such as virtual reality, biofeedback, treadmill exercises with supported bodyweight and torso weighting appear to be of value, their specific efficacy has to be further investigated. Drugs have only been studied in degenerative ataxia, and the level of evidence is low."