*** Welcome to piglix ***

Biquaternion


In abstract algebra, the biquaternions are the numbers w + x i + y j + z k, where w, x, y, and z are complex numbers and the elements of {1, i, j, k} multiply as in the quaternion group. As there are three types of complex number, so there are three types of biquaternion:

This article is about the ordinary biquaternions named by William Rowan Hamilton in 1844 (see Proceedings of Royal Irish Academy 1844 & 1850 page 388). Some of the more prominent proponents of these biquaternions include Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius Lanczos. As developed below, the unit quasi-sphere of the biquaternions provides a presentation of the Lorentz group, which is the foundation of special relativity.

The algebra of biquaternions can be considered as a tensor product CH (taken over the reals) where C is the field of complex numbers and H is the algebra of (real) quaternions. In other words, the biquaternions are just the complexification of the (real) quaternions. Viewed as a complex algebra, the biquaternions are isomorphic to the algebra of 2×2 complex matrices M2(C).

Let {1, i, j, k} be the basis for the (real) quaternions ℍ, and let u, v, w, x be complex numbers, then

is a biquaternion. To distinguish square roots of minus one in the biquaternions, Hamilton and Arthur W. Conway used the convention of representing the square root of minus one in the scalar field ℂ by h since there is an i in the quaternion group. Then


...
Wikipedia

...