In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space VC over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V (a space over the real numbers) may also serve as a basis for VC over the complex numbers.
Let V be a real vector space. The complexification of V is defined by taking the tensor product of V with the complex numbers (thought of as a two-dimensional vector space over the reals):
The subscript R on the tensor product indicates that the tensor product is taken over the real numbers (since V is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, VC is only a real vector space. However, we can make VC into a complex vector space by defining complex multiplication as follows:
More generally, complexification is an example of extension of scalars – here extending scalars from the real numbers to the complex numbers – which can be done for any field extension, or indeed for any morphism of rings.
Formally, complexification is a functor VectR → VectC, from the category of real vector spaces to the category of complex vector spaces. This is the adjoint functor – specifically the left adjoint – to the forgetful functor VectC → VectR from forgetting the complex structure.
By the nature of the tensor product, every vector v in VC can be written uniquely in the form
where v1 and v2 are vectors in V. It is a common practice to drop the tensor product symbol and just write