Batai virus | |
---|---|
Virus classification | |
Group: | Group V ((−)ssRNA) |
Order: | Unspecified |
Family: | Bunyaviridae |
Genus: | Orthobunyavirus |
Batai virus (BATV) is a RNA virus belonging to family Bunyaviridae, genus Orthobunyavirus.
Batai virus (BATV) is an enveloped, single-stranded, negative sense RNA genome. It is a member of the genus Orthobunyavirus and belongs to the family Bunyaviridae; it was first isolated from Culex mosquitoes in Malaysia in 1955. Evidence from serological surveillance and virus isolation shows that this virus is widely distributed around the world. Because it’s likeness to other orthobunyaviruses it contributes to both human and animal disease. In humans it has been noted in causing severe fever, and in bovines has been associated with premature birth, birth defects, and increased abortion rates. It is transmitted through mosquito bites, ticks, and biting midges, and occurs from cold to tropical regions of Africa, Asia, and Europe.
The structure of Batai virus (BATV) consists of an enveloped nucleocapsid that is composed of three RNA segments: small (S), medium (M), and large (L). The S segment encodes the nucleocapsid (N) and the non-structural (NSs) proteins. The M segment encodes the virion surface glycoproteins (Gn, Gc) and non-structural proteins (NSm). The L segment encodes for the replicase/ transcriptase L protein. The nonstructural proteins NSm participate in virus assembly and NSs plays a key role in counteracting the host immune response by blocking alpha/beta interferon induction The full-length genome of NM/12 consists of a 947 base pair nucleotide S segment, a 4405 base pair nucleotide M segment, and a 6870 base pair nucelotide L segment. It also contains one open reading frame that encode three proteins of 151, 943, or 1395 amino acids.
Viral enveloped nucleocapsids utilize membrane glycoproteins on their surface to mediate entry into host cells. Averaging of glycoprotein spikes of membrane viruses, such as HIV-1, has been a particularly successful approach for studying their structure. An understanding of the structure is integral for revealing both the molecular basis of virus–host interactions and guiding antiviral and vaccine design development. A software named Jsubtomo enables visualization of the structure of viral glycoprotein spikes to a resolution in the range of 20-40 Å and allows for study of the study of higher order spike-to-spike interactions on the virion membrane.
Extensive research has yet to be performed on the detailed crystalline structure of Batai virus, but research on the closely related Bunyamwera virus has shown a distinct functionality of each of the two nucleocapsid side chains. An N-terminal arm and a C-terminal tail were found to interact with neighboring NP protomers to form a tetrameric ring-shaped organization. Each protomer bound a 10-nucleotide RNA molecule, which was acquired from the expression host, in the positively charged crevice between the N and C lobes.Cryo-electron microscopy has also determined that whilst Bunyamwera virions are pleomorphic in shape, they display a locally ordered lattice of glycoprotein spikes. Each spike protrudes 18 nanometers from the viral membrane and becomes disordered upon introduction to an acidic environment.