In mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals (which obviously excludes being a PID); if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout.
A ring is a Bézout domain if and only if it is an integral domain in which any two elements have a greatest common divisor that is a linear combination of them: this is equivalent to the statement that an ideal which is generated by two elements is also generated by a single element, and induction demonstrates that all finitely generated ideals are principal. The expression of the greatest common divisor of two elements of a PID as a linear combination is often called Bézout's identity, whence the terminology.
Note that the above gcd condition is stronger than the mere existence of a gcd. An integral domain where a gcd exists for any two elements is called a GCD domain and thus Bézout domains are GCD domains. In particular, in a Bézout domain, irreducibles are prime (but as the algebraic integer example shows, they need not exist).