In abstract algebra, a non-zero non-unit element in an integral domain is said to be irreducible if it is not a product of two non-units.
Irreducible elements should not be confused with prime elements. (A non-zero non-unit element in a commutative ring is called prime if, whenever for some and in then or In an integral domain, every prime element is irreducible, but the converse is not true in general. The converse is true for unique factorization domains (or, more generally, GCD domains.)