Bézout's identity (also called Bézout's lemma) is a theorem in elementary number theory: let a and b be nonzero integers and let d be their greatest common divisor. Then there exist integers x and y such that
In addition,
The integers x and y are called Bézout coefficients for (a, b); they are not unique. A pair of Bézout coefficients can be computed by the extended Euclidean algorithm. If both a and b are nonzero, the extended Euclidean algorithm produces one of the two pairs such that and (equality may occur only if one of a and b is a multiple of the other).
Many theorems of elementary theory of numbers, such as Euclid's lemma or Chinese remainder theorem, result from Bézout's identity.